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* An engineering research
o= institute at the University of

am SYDNEY Sydney
* Research staff
— 6 academics
— 40 research fellows
— 50 PhD students
— 30 software, mech/aero,
electrical/electronic staff
* One of the largest field
robotics and intelligent
systems group in the world

« Dedicated to the scientific
advancement and industry
uptake of autonomous robots
and intelligent systems for
outdoor operations
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Field Robotics and
Complex Software
Systems

Sensors and Machine
Perception

Machine Control and
Autonomous Decision
Making

Learning Systems and
Adaptation

Systems of Intelligent
Systems

Research and Technology Themes

* Novel Machines and Mechanisms for Air, Ground, Marine and Space
® Complex Software System Development
e Autonomous Information Processing

e Laser, Radar, Vision, Thermal, Hyperspectral, Inertial, GPS.
e Rich Probabilistic Models and Representations
e Advanced algorithms for localisation and mapping

* Modeling complex platform motion and environment interaction
e Linear and adaptive control algorithms and implementation
e Probabilistic planning techniques

e Data Mining and Classification
* Machine learning for environment modelling
e Reinforcement learning for control and planning

e Multi-sensor and multi-platform data fusion and control
e Large scale optimisation for operation planning
* Human-machine systems and interaction
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Field Robotics and
Complex Software
Systems

Sensors and Machine
Perception

Machine Control and
Autonomous Decision
Making

Learning Systems and
Adaptation

Systems of Intelligent
Systems

Human-

Machine
Interaction

Environmental
Monitoring
and Scientific
Exploration

&\\ACFR Application Areas

Intelligent
Transport

and
Logistics

Agriculture
and Food
Production

Defence
and
Security

Mining and
Construction
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Robots at Work

Enhanced Straddle Carrier



\\ ACFR ENHANCED STRADDLE CARRIER

FOR FIELD ROBOTICS

Durrant-Whyte, Hugh, Daniel Pagac, Ben Rogers,
Michael Stevens, and Graeme Nelmes. "Field and
service applications-an autonomous straddle carrier
for movement of shipping containers-from research to
operational autonomous Systems." Robotics &
Automation Magazine, IEEE 14, no. 3 (2007): 14-23.



ACF"*% HIGH INTEGRITY NAVIGATION

A

[ Ges || Information Filter 1 / <
— [ x,, — Svsrem Stares
Inertial : Xy — Bias States
| Information Filter
I x,, — Fused State ' . osnicked
~ Fused Errvor Error
Radar ’> - Information Filter P >
x,, — Svstem Stares
Encoder ' x,, = Bias States & -
o] EEmE=S— 3/ e

stote: RUNNING

Tie ERTG oy
eageNr T

@ .L;.’;;;.:.>

0 00 e

Y L \exzen creves v

™ poas HTGH
©IMUTOOWN
WaItmy

- ® w0 sevcis Yot
© e aa e of

| G
]
\ » - i -

\ = ‘ ‘ -




.L\\

AmngmRu COMPLETE AUTOMATION OF A BERTH




l&!\ A“gF"*Ra PLANNING UNDER UNCERTAINTY

* More recent work from
UTS has considered the T
case of planning under = E.ﬁ*ﬁ“‘a"“i"’”;mm
uncertainty hElE IR e
* Mutli-objective planning e
under uncertainty,

Including

— Travelling time

— Waiting time

— Finishing time for high
priority jobs

\ \ \ Truck Area
Cai, B., Huang, S., Liu, D., & Dissanayake, G. (2014). Rescheduling &8 - O 8 oy Truek Node
policies for large-scale task allocation of autonomous straddle
carriers under uncertainty at automated container terminals.
Robotics and Autonomous Systems, 62(4), 506-514.
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e Worklng Closely Wlth ‘ Qantas 747 Flaat - JAN2007 .

Qantas on the
development of flight
planning systems

Small changes in

weather can have a . o | 3

. . . = | , y ; 02-Jan-2007 R
significant impact of T B I
flight times and
efficiency ( s D | — R
Leveraging recent = N N A ‘; re== 5

I ._ m_’g " —’ QAR A ; i“' OARA _’ SN E_ﬁ'-‘o‘_” T
work in multi- e o e | - [
objective optimisation § | |
and planning under - | e i
uncertainty Fight Pantieg ﬂ‘--J .......... mm‘sq::. -l Wachiw Leamng ‘
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Robots at Work

Defence and Security



n‘-\\AmgF"*% UNMANNED AIR VEHICLES

e DSTO

 BAE Systems
* ST Aerospace
e US Air Force

* Ministry of Defence
UK

e US Office of Naval
Research

e Australian Research
Council

* Department of
Agriculture-s
Fisheries. and
Forestry

e Land and Water
Australia

e Australian Plague
Locust Commission

* Meat and Livestock
Australia
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International Journal of Robotics Research, 22(7-8), 505-
539.
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2000-2004
ANSER 1 — Demonstration of a
Decentralised Air Survelllance System
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Autonomous UAV Docking for
Aerial Refueling

Daniel B. Wilson
Dr Ali Haydar Goktogan
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*’LX ACFE SPECIAL FORCES TRAINING

 Work on indoor
SLAM and
exploration

 Recelived a request
from Australian
Special Forces
training facility for
assistance with the
development of a
flexible, robotic
system

* An internally funded
project had spent 12 o=
years developing a
prototype
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.*-\ ACER | 5caLizaTiON

Odometry

— Wheel encoders to estimate
forward speed and turn rate

Laser features
— Surveyed into the range
— Easily identifiable targets
Data Fusion

— Fusing encoder data with the
laser observations yields
best estimate of vehicle
pose

— Initialisation from unknown
location depends on
recognizing feature
arrangements

Alternative methods

— GPS - suitable for outdoor
environments

— Wi-Fi Strength




.‘\-\\Aﬂiﬁ MAPPING

 [Feature based localization
and AMCL require map of
environment

* Deployed Simultaneous
Localisation and Mapping

« Occupancy Grid Mapping
algorithms

« Autonomous Mapping to

create maps using the
vehicle sensing capabilities
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OBSTACLE AVOIDANCE

Laser used for obstacle
avoidance

— Allows local decisions about
best path to next waypoint

— Presents flexibility in plan
execution

— Continuation of game post
shot

Vector Field Histogram

— Fast obstacle avoidance
technique

— Discretization of area around
vehicle

— Choice of direction towards
goal which minimizes
chance of collision

Significant tuning required
to operate with multiple
plattorms in confine
spaces



n&!\ ACF"*R& PLANNING AND CONTROL

Scenario planning to be overseen by an operator

A simple waypoint based interface used to designate
timed waypoints for each platform

No explicit coordination of platforms

Local control of each platform facilitates waypoint
following and dynamic obstacle avoidance
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* Development of ORCA
Interprocess
communication
framework

« Based on an existing
open source project
(OROCOS)

e Pre-ROS

Makarenko, A., Brooks, A., & Kaupp, T. (2006, October).
Orca: Components for robotics. In International
Conference on Intelligent Robots and Systems (IROS)
(pp. 163-168).
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.‘L\ ACER  \IARATHON TARGETS

« Marathon Targets established
to exploit the technology

« Supplying flexible robotic
training systems to special
forces around the world

* Requirement for a multi-robot
system with a SLAM based
mapping system that can be
run by non-specialist operators

« Significant engineering
investment in reliability and
robustness

« Entire system essentially
redesigned from the ground up
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SEMI-URBAN OPERATIONS

Dynamic 3D Perception

Multi Platform Active Sensor Control for
Optimal Multi-Target Tracking

BAE SYSTEMS

Centre for Intelligent Mobile Systems

o\ acr?
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Robots at Work

Autonomous Mining
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 The Rio Tinto Centre for Mine Automation represents
one of the world’s largest commercial automation
projects

« Established in 2007 to exploit developments in
autonomous systems for mining applications

« Automated drill rigs originally developed at the ACFR
are now in continuous 24/7 operation and can be
controlled from a Remote Operations Centre in Perth

« Work continues to increase safety and efficiency
through the use of:
— Novel sensing techniques
— Machine learning
— Data fusion
— Systems engineering




« Complex system of systems
— Centralised, hierarchical control
— ‘Chain of command’
— Bounds on responsibility
*Trusted systems
— Different OEM implementations
— Commanding / interfaces
— Monitoring / safety
Humans & autonomous systems at different levels
— Levels of autonomy
— Manned — Autonomous
*Machine operators
« Supervisors of autonomy
*Planning (level of detail)
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Robots at Work
Art
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* Requires
— Consideration of

aesthetics
— Focus on form rather than e =
— ;? —
technology e - = =
— Human robot interaction — ~ o

— ——
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Robots at Work

Agriculture



.‘!\ ACER  AGRICULTURE (GROUND)

* Long-term perception problems

 New sensor modalities
— Hyper-spectral
— Gamma log

« Mutli-robot survey

— Air/ground collaborative mapping
— Harvest yield estimation

* New robots
— Ladybird
« Manipulation of the environment
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Robots at Work

Environment (marine)



.‘!\ ACFE FRONTIERS IN MARINE ROBOTICS

* Long history of successful adoption of robotic
systems in marine sciences (oceanography, biology,
geoscience, archaeology, etc.) and industrial
applications (exploration, oil and gas, minerals, etc.)

« Strong ‘pull’ from end users — requirement for
remote and robotic systems

e Support from governments around the globe

Images courtesy
of WHOI, FAU,
URI, iRobot,
MBARI, Reuters




n‘L\ ACFE FRONTIERS IN MARINE ROBOTICS

* |nitiatives in Ocean
Observation designed
to understand ocean
dynamics

 Integration of modeling
with observations
provided by satellite
and in-situ systems
Including ship-borne
Sensors, moorings,
gliders and AUVs

* Challenges in
navigation,
communication, data
assimilation,
coordination, planning
In dynamic fields and
long term deployments

Images courtesy of Ocean Observatories Initiative (http://www.oceanobservatories.org/)
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amm\ ranars INTEGRATED MARINE OBSERVING SYSTEM

« NCRIS is a program
designed to provide
Infrastructure to
support national
research priorities

« Marine Science
designated as one of
8 priority programs

« A $150M program to
provide infrastructure
to support the marine
sciences in Australia
(2007-2016)
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Gliders

Animal tagging
and telemetry



http://en.wikipedia.org/wiki/Image:Argo_Cutaway.png
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Flexible, mobile, high
resolution data collection
device

Obijective to monitor benthic
rocesses and relate changes
0 oceanographic processes

Sensors include
— Vision (stereo)

— Sonar (multibeam, imaging
and fwd obstacle
avoidance)

— DVL

— Compass

— Pressure

— Water Chemistry

— Up/down looking
hyperspectral

Depth to 800m

Mission Time up to 12 hours ‘:

Rear DVL

Strobe

Horizontal ]
Thrusters - P
o Bt

IMOS AUV FACILITY

Sirius

GPS Antenna

Embedded
Computing a

—

Vertical
Thruster

Forward
Looking

Depth, USBL o

| | CcTD | |
.-:f o) §

Multibeam Stereo  Batteries  Fwd
Sonar  |maging Strobe
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ACFE BATHYMETRY FROM STEREO
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A‘“(*L:F"*Rgs AUV AND ROV SEAFLOOR SURVEYS

autillus (Med),
URI/OET/ACFR, 2010-2012

Deepwater Horizo"h,
WHOI/ACFR, 2010

Paviop

ottingham/ACFR, Fukushima,

NOAA, Sicily, RPM/ACFR UTokyo/ACFR,

2014
0 Artificial Hydrothermal,
Methane hydrates, UTokyo/ACFR, 2014
WHOI/ACFR,

o
1 LT
2011/2013 . V Nautillus (Caribbean), : Q%'P

0{5’

- Scott Reef
(7 SOI/WHOI/URI/UH/ACFR,

Lizard Island; St *
ws/UMacQ//
3-2015

%

&

. Ecology
. Archaeology
. Geoscience

IMOS AUV Facility
2007-2015 . /

© 2009 www.outline-world-map.com
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IMOS AUV DATA ARCHIVE
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o GBR Noggin Reef (2007)
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® GBR Hydrographers Passage (2007)

() Moreton Island (2010, 2011,
2012, 2013)

-------- () Solitary Islands (2012)

(C) Port Stephens (2010, 2012, 2015)
- © Sydney (2012)

’ Batemans Bay (2010, 2012, 2014)

Flinders CMR (2011, 2013)

Freycinet (2009, 2010, 2011,
2012, 2013, 2014)
Tasman Peninsula (2008, 2009, 2010,

Huon (2009, 2010, 2012, 2014) 2011, 2012, 2014)
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(b) April 2011

(c) April 2012 (d) April 2013
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Imagery Mosaics Surface Topogr phy

* Now examining
detailed changes in
structural complexity
across plots

« Some areas show
decreases in
complexity due to
mortality

« Others are
Increasing in
complexity as
branching corals
begin to grow

April 2010

April 2011

April 2013
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« Latest expedition to Scott Reef in
WA, supported by Schmidt Ocean
Institute, aimed to demonstrate multi-
vehicle, coordinated operations

— ACFR: AUV Sirius, 2x Iver AUVs

— URI: Imaging float

— WHOI: Slocum glider

— UH: Wave glider

— EvolLogics: USBL Communications and
tracking

« Surveying a 300 km? coral lagoon

« Live tracking of vehicles broadcast
online

« Upload of images for online
annotation and remote visit of ship to
support outreach vl |
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* One of the key building
blocks for these multi-
robot systems is the
communications and
visualisation
Infrastructure required to
track multiple platforms

* Coordinated deployments ..
of up to 4 platforms ‘
operating around ship

« Initial experiments
conducted in online
replanning and
collaborative survey
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 Oceanic gliders currently P) m-.MH

have endurances of several = = = = & =
months using buoyancy
engines

* New thermal propulsion
mechanisms promise to
extend these endurances to
multi-year deployments

0530

~

L | Images courtesy of Webb,
PUTRPLS SRS A ® U Washington and UWA

Thermal Glider
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31508 -
* A number of organisations are 1 t i

now developing long range

AUVs =3
— MBARI: Tethys vehicle (range:
1000km) -

— Southampton: Autosub long range
(range: 6000km)

> - e
- - :

WS g .._._“.‘;J].m ST
- g — - e
hes and WET Labe - ~ = ency and tmme angeof
aﬁi‘“ e sen - R
sor ‘sentor will complete i N 3 - S
the sensar sune. : | ——-\\x r"‘
The bow can be extended to sup- ; 1y
part lar g payloads. : ] P “_"".

Images courtesy of MBARTI and NOC
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)

« Wave glider uses wave
energy for propulsion

« Long range/duration
capability (recently
completed ~17000 km
crossing of Pacific)

Images courtesy of Liquid Robotics



*\\ ACER  UTURE DIRECTIONS

Novel sensing payloads and vehicle systems
Further improvements in navigation and planning

Supervised autonomy under communication
constraints

Multi-vehicle, heterogeneous operations
Adaptive mission planning

Long term deployments

Intervention (grasping and manipulation)
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 Fielding multi-robot systems requires considerable
engineering work in addition to algorithmic
development to build reliable systems

« Engaging with end user communities in exploring
the application of these technologies to a variety of
application domains

« EXciting challenges and novel applications likely to
drive developments in these areas
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